```
        Started on Tuesday, 24 November 2020, 3:50 PM
        State Finished
        Completed on Tuesday, 24 November 2020, 4:53 PM
        Time taken 1 hour 2 mins
            Grade 28.00 out of 30.00 (93%)
```

Question 1
Correct
Mark 1.00 out of
1.00

```
An \(n \times n\) matrix \(A\) is invertible if and only if
Select one:
a. \(|A|=0\)
b. \(A x=0\) has a nonzero solution
c. \(A=I\)
- d. there exists a matrix \(B\) such that \(A B=I\)
```

The correct answer is: there exists a matrix $B$ such that $A B=I$

Question 2
Correct
Mark 1.00 out of
1.00
$(0,0,0)^{T}$ is a linear combination of the vectors $(1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}$

Select one:

- a. True $\sqrt{ }$
b. False

The correct answer is: True
Question 3
Correct
Mark 1.00 out of
1.00

In the $n \times n$-linear system $A x=b$, if $A$ is singular and $b$ is a linear combination of the columns of $A$ then the system has

Select one:
a. exactly two solutions
b. no solution
c. a unique solution

- d. infinitely many solutions $\downarrow$

The correct answer is: infinitely many solutions

| Question 4 | If $y, z$ are solutions to $A x=b$, then $y+z$ is a solution of the system $A x=0$. |
| :---: | :---: |
| Correct |  |
| Mark 1.00 out of | Select one: |
| 1.00 | a. True |
|  | ( b. False $\sqrt{ }$ |

The correct answer is: False

Question 5
Incorrect
Mark 0.00 out of
1.00 $\qquad$

Question 6
Correct
Mark 1.00 out of
1.00 $\qquad$

Question 7
Correct
Mark 1.00 out of
1.00

Any two $n \times n$-singular matrices are row equivalent.

Select one:
a. False
(b) True x

## The correct answer is: False

If $A$ is a $4 \times 3$-matrix, $b \in \mathbb{R}^{4}$, and the system $A x=b$ is consistent, then $A x=b$ has a unique solution.

Select one:
a. True
(b. False $\checkmark$

The correct answer is: False

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 2 & -1 & 0 \\ 2 & 3 & 1 & -1 \\ 1 & 1 & \alpha & \beta\end{array}\right)$, then the system has only one solution if
Select one:

- a. $\alpha \neq 2$ and $\beta$ any number
b. $\alpha \neq 2$ and $\beta \neq-1$
c. $\alpha=2$ and $\beta=-1$
d. $\alpha=2$ and $\beta \neq-1$

The correct answer is: $\alpha \neq 2$ and $\beta$ any number

| Question $\mathbf{8}$ |
| :--- |
| Correct |
| Mark 1.00 out of |
| 1.00 |

Question 9
Correct
Mark 1.00 out of 1.00

If $A$ is a nonsingular $3 \times 3$-matrix, then the reduced row echelon form of $A$ has no row of zeros.
Select one:
a. False

- b. True $V$

The correct answer is: True

If $E$ is an elementary matrix then one of the following statements is not true

Select one:
a. $E^{-1}$ is an elementary matrix.
b. $E$ is nonsingular.
c. $E^{T}$ is an elementary matrix.

- d. $E+E^{T}$ is an elementary matrix. $\checkmark$

| Question 10 |
| :--- |
| Correct |
| Mark 1.00 out of |
| 1.00 |

If $A$ is a $3 \times 3$ matrix with $\operatorname{det}(A)=-2$. Then $\operatorname{det}(\operatorname{adj}(A))=$
Select one:

- a. 4.
b. -4 .
c. -8 .
d. 8 .

The correct answer is: 4 .

Question 11
Correct
Mark 1.00 out of
1.00

Question 12
Correct
Mark 1.00 out of
1.00

If $A$ is singular and $B$ is nonsingular $n \times n$-matrices, then $A B$ is

Select one:

- a. singular $\vee$
b. may or may not be singular
c. nonsingular

The correct answer is: singular

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 1 & 1 & 2 & 5\end{array}\right)$, then the system $A x=b$ is inconsistent
Select one:

- a. True $\checkmark$
b. False

The correct answer is: True

Question 13
Correct
Mark 1.00 out of
1.00

If $A$ is a singular $n \times n$-matrix, $b \in \mathbb{R}^{n}$, then the system $A x=b$
Select one:

- a. has either no solution or an infinite number of solutions $\downarrow$
b. has infinitely many solutions.
- c. has a unique solution
d. is inconsistent

The correct answer is: has either no solution or an infinite number of solutions

Question 14
Correct
Mark 1.00 out of
1.00

If $A$ is symmetric and skew symmetric then $A=0$. ( $A$ is skew symmetric if $A=-A^{T}$ ).

Select one:

- a. True $\checkmark$
b. False

| Question 15 |
| :--- |
| Correct |
| Mark 1.00 out of |
| 1.00 |

1.00

If $A=L U$ is the $L U$-factorization of a matrix $A$, and $A$ is singular, then

Select one:
a. $L$ and $U$ are both singular

- b. $U$ is singular and $L$ is nonsigular
$\checkmark$
c. $L$ and $U$ are both nonsingular
d. $L$ is singular and $U$ is nonsigular

The correct answer is: $U$ is singular and $L$ is nonsigular

```
Question 16
Correct
Mark 1.00 out of
1.00
1.00
```

$\square$

Question 17
Correct
Mark 1.00 out of
1.00

Question 18
Correct
Mark 1.00 out of
1.00

If $A$ and $B$ are singular matrices, then $A+B$ is also singular.

Select one:

- a. False $\checkmark$
b. True

The correct answer is: False

If $A$ is a singular matrix, then $A$ can be written as a product of elementary matrices.

Select one:

- a. False $\checkmark$
b. True

The correct answer is: False

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a $3 \times 3$ matrix $A$ and $(1,1,1)^{T}$ be a solution of the system $A x=(4,4,5)^{T}$. Then the third column of the matrix $A$ is

Select one:

- a. $(1,1,4)^{T}$.
$\checkmark$
b. $(4,-1,1)^{T}$.
c. $(-1,-1,-4)^{T}$.
d. $(-1,-2,1)^{T}$.

The correct answer is: $(1,1,4)^{T}$.

Question 19
Correct
Mark 1.00 out of
1.00

Let $A$ be a $3 \times 4$ matrix which has a row of zeros, and let $B$ be a $4 \times 4$ matrix, then $A B$ has a row of zeros.

Select one:

- a. True $\downarrow$
b. False

Let $A$ be a $4 \times 4$-matrix such that $A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, then
Select one:
a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$
b. $A$ is the zero matrix
c. The system $A x=0$ has only one solution

- d. $A$ is singular. $\checkmark$

The correct answer is: $A$ is singular.

```
Question 21
Correct
Mark 1.00 out of
1.00
```

estion 22
Correct
Mark 1.00 out of
1.00

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & -1 & 3\end{array}\right)$,then $\operatorname{det}(A)=$
Select one:
(-) a. 2
b. 3
c. 5

- d. 0

The correct answer is: 2

```
Question 23
Correct
Mark 1.00 out of
1.00
```

If the row echelon form of $(A \mid b)$ is $\left(\begin{array}{cccc:c}1 & 0 & -2 & -1 & -2 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)$ then the general form of the solutions is given by

Select one:
a. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ \alpha\end{array}\right)$
b. $x=\left(\begin{array}{c}-2-\alpha \\ 1-\alpha \\ \alpha \\ 1\end{array}\right)$
© c. $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$
d. $x=\left(\begin{array}{c}\alpha \\ 2-\alpha \\ \alpha \\ \alpha\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{c}-2-\alpha \\ -1+2 \alpha \\ -\alpha \\ \alpha\end{array}\right)$

Question 24
Correct
Mark 1.00 out of
1.00

If $A, B$ are $n \times n$-skew-symmetric matrices $\left(A\right.$ is skew symmetric if $\left.A^{T}=-A\right)$, then $A B+B A$ is symmetric Select one:

- a. True $\vee$
b. False

The correct answer is: True

Question 25
Correct
Mark 1.00 out of 1.00

Let $A$ be a $4 \times 3$-matrix with $a_{2}-a_{3}=0$. If $b=a_{1}+a_{2}+a_{3}$, where $a_{j}$ is the $j$ th column of $A$, then the system $A x=b$ will have infinitely many solutions.

## Select one:

a. False

- b. True $\checkmark$

The correct answer is: True
Question 26
Correct
Mark 1.00 out of
1.00

If $A$ is a $3 \times 3$-matrix and the system $A x=\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)$ has a unique solution, then the system $A x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

Select one:
a. is inconsistent
© b. has only the zero solution. $\downarrow$
c. has infinitely many solutions

The correct answer is: has only the zero solution.
Question 27
Incorrect
Mark 0.00 out of
1.00
1.00

If $A B=0$, where $A$ and $B$ are $n \times n$ nonzero matrices. Then
Select one:
© a. either $A$ or $B$ is singular $\times$
b. both $A, B$ are singular.
c. both $A, B$ are nonsingular.
d. either $A=0$ or $B=0$

The correct answer is: both $A, B$ are singular.

| Question 28 |
| :--- |
| Correct |
| Mark 1.00 out of |
| 1.00 |

1.00

If $x_{0}$ is a solution of the nonhomogeneous system $A x=b$ and $x_{1}$ is a solution of the homogeneous system $A x=0$. Then $x_{1}+x_{0}$ is a solution of

Select one:
a. the system $A x=0$
b. the system $A x=2 b$
c. the system $A x=A b$
( d. the system $A x=b$
$\checkmark$

The correct answer is: the system $A x=b$

Question 29
Correct
Mark 1.00 out of
1.00

If $A$ is a nonsingular $n \times n$ matrix, $b \in \mathbb{R}^{n}$, then

Select one:
a. The system $A x=b$ is inconsistent
b. The system $A x=b$ has only two solutions
© c. The system $A x=b$ has a unique solution
d. The system $A x=b$ has infinitely many solutions

The correct answer is: The system $A x=b$ has a unique solution

```
Question 30
Correct
Mark 1.00 out of
1.00
The adjoint of the matrix }(\begin{array}{cc}{-1}&{2}\\{1}&{3}\end{array})\mathrm{ is
Select one:
a. \(\left(\begin{array}{cc}-1 & 1 \\ 2 & -3\end{array}\right)\)
b. \(\left(\begin{array}{cc}1 & -2 \\ -1 & -3\end{array}\right)\)
(.) c. \(\left(\begin{array}{cc}3 & -2 \\ -1 & -1\end{array}\right)\)
d. \(\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right)\)
The correct answer is: \(\left(\begin{array}{cc}3 & -2 \\ -1 & -1\end{array}\right)\)
```

Jump to..

Data retention summary.
Switch to the standard theme

